滴虫病是一种常见的传染病,由寄生虫毛trichomonas阴道引起,如果不加以治疗,则增加了在人类中艾滋病毒的风险。从微观图像中对阴道的自动检测可以提供至关重要的信息,以诊断滴虫病。然而,由于毛滴虫和其他细胞之间的高外观相似性(例如,白细胞),由于其运动性较大,而且缺乏较大的巨大的外观差异,因此精确的阴道分割(TVS)是一项艰巨的任务,这是一项具有挑战性的任务,最重要的是,最重要的是,其出现较大的外观变化。对深度模型培训的规模注释数据。为了应对这些挑战,我们精心阐述了第一个大规模的微观图像数据集,trichomonas vaginalis,名为TVMI3K,由3158张图像组成,涵盖了各种背景中的毛trichomonas,具有高质量的注释,包括对象层面标签,对象标签,对象,对象,对象,物体,物体,物体,物体标签,物体标签,物体标签,对象。边界和具有挑战性的属性。此外,我们提出了一个简单而有效的基线,称为TVNet,以自动从微观图像中分割毛刺,包括高分辨率融合和前景 - 背景的注意模块。广泛的实验表明,我们的模型实现了卓越的细分性能,并且在定量和定性上都超越了各种尖端的对象检测模型,这使其成为促进电视任务中未来研究的有希望的框架。数据集和结果将在:https://github.com/cellrecog/cellrecog上公开可用。
translated by 谷歌翻译
伪装的对象检测(COD),将其优雅地融合到周围环境中的对象是一项有价值但充满挑战的任务。现有的深度学习方法通常陷入具有完整和精细的对象结构准确识别伪装对象的困难。为此,在本文中,我们提出了一个新颖的边界引导网络(BGNET),以用于伪装对象检测。我们的方法探索了有价值的和额外的对象相关的边缘语义,以指导COD的表示形式学习,这迫使模型生成突出对象结构的特征,从而促进了精确边界定位的伪装对象检测。对三个具有挑战性的基准数据集进行的广泛实验表明,我们的BGNET在四个广泛使用的评估指标下的现有18种最新方法明显优于现有的18种最新方法。我们的代码可在以下网址公开获取:https://github.com/thograce/bgnet。
translated by 谷歌翻译
In contrast to the control-theoretic methods, the lack of stability guarantee remains a significant problem for model-free reinforcement learning (RL) methods. Jointly learning a policy and a Lyapunov function has recently become a promising approach to ensuring the whole system with a stability guarantee. However, the classical Lyapunov constraints researchers introduced cannot stabilize the system during the sampling-based optimization. Therefore, we propose the Adaptive Stability Certification (ASC), making the system reach sampling-based stability. Because the ASC condition can search for the optimal policy heuristically, we design the Adaptive Lyapunov-based Actor-Critic (ALAC) algorithm based on the ASC condition. Meanwhile, our algorithm avoids the optimization problem that a variety of constraints are coupled into the objective in current approaches. When evaluated on ten robotic tasks, our method achieves lower accumulated cost and fewer stability constraint violations than previous studies.
translated by 谷歌翻译
A storyboard is a roadmap for video creation which consists of shot-by-shot images to visualize key plots in a text synopsis. Creating video storyboards however remains challenging which not only requires association between high-level texts and images, but also demands for long-term reasoning to make transitions smooth across shots. In this paper, we propose a new task called Text synopsis to Video Storyboard (TeViS) which aims to retrieve an ordered sequence of images to visualize the text synopsis. We construct a MovieNet-TeViS benchmark based on the public MovieNet dataset. It contains 10K text synopses each paired with keyframes that are manually selected from corresponding movies by considering both relevance and cinematic coherence. We also present an encoder-decoder baseline for the task. The model uses a pretrained vision-and-language model to improve high-level text-image matching. To improve coherence in long-term shots, we further propose to pre-train the decoder on large-scale movie frames without text. Experimental results demonstrate that our proposed model significantly outperforms other models to create text-relevant and coherent storyboards. Nevertheless, there is still a large gap compared to human performance suggesting room for promising future work.
translated by 谷歌翻译
Retrieval-augmented in-context learning has emerged as a powerful approach for addressing knowledge-intensive tasks using frozen language models (LM) and retrieval models (RM). Existing work has combined these in simple "retrieve-then-read" pipelines in which the RM retrieves passages that are inserted into the LM prompt. To begin to fully realize the potential of frozen LMs and RMs, we propose Demonstrate-Search-Predict (DSP), a framework that relies on passing natural language texts in sophisticated pipelines between an LM and an RM. DSP can express high-level programs that bootstrap pipeline-aware demonstrations, search for relevant passages, and generate grounded predictions, systematically breaking down problems into small transformations that the LM and RM can handle more reliably. We have written novel DSP programs for answering questions in open-domain, multi-hop, and conversational settings, establishing in early evaluations new state-of-the-art in-context learning results and delivering 37-200%, 8-40%, and 80-290% relative gains against vanilla LMs, a standard retrieve-then-read pipeline, and a contemporaneous self-ask pipeline, respectively.
translated by 谷歌翻译
Future work sentences (FWS) are the particular sentences in academic papers that contain the author's description of their proposed follow-up research direction. This paper presents methods to automatically extract FWS from academic papers and classify them according to the different future directions embodied in the paper's content. FWS recognition methods will enable subsequent researchers to locate future work sentences more accurately and quickly and reduce the time and cost of acquiring the corpus. The current work on automatic identification of future work sentences is relatively small, and the existing research cannot accurately identify FWS from academic papers, and thus cannot conduct data mining on a large scale. Furthermore, there are many aspects to the content of future work, and the subdivision of the content is conducive to the analysis of specific development directions. In this paper, Nature Language Processing (NLP) is used as a case study, and FWS are extracted from academic papers and classified into different types. We manually build an annotated corpus with six different types of FWS. Then, automatic recognition and classification of FWS are implemented using machine learning models, and the performance of these models is compared based on the evaluation metrics. The results show that the Bernoulli Bayesian model has the best performance in the automatic recognition task, with the Macro F1 reaching 90.73%, and the SCIBERT model has the best performance in the automatic classification task, with the weighted average F1 reaching 72.63%. Finally, we extract keywords from FWS and gain a deep understanding of the key content described in FWS, and we also demonstrate that content determination in FWS will be reflected in the subsequent research work by measuring the similarity between future work sentences and the abstracts.
translated by 谷歌翻译
Heterogeneous graph contrastive learning has received wide attention recently. Some existing methods use meta-paths, which are sequences of object types that capture semantic relationships between objects, to construct contrastive views. However, most of them ignore the rich meta-path context information that describes how two objects are connected by meta-paths. On the other hand, they fail to distinguish hard negatives from false negatives, which could adversely affect the model performance. To address the problems, we propose MEOW, a heterogeneous graph contrastive learning model that considers both meta-path contexts and weighted negative samples. Specifically, MEOW constructs a coarse view and a fine-grained view for contrast. The former reflects which objects are connected by meta-paths, while the latter uses meta-path contexts and characterizes the details on how the objects are connected. We take node embeddings in the coarse view as anchors, and construct positive and negative samples from the fine-grained view. Further, to distinguish hard negatives from false negatives, we learn weights of negative samples based on node clustering. We also use prototypical contrastive learning to pull close embeddings of nodes in the same cluster. Finally, we conduct extensive experiments to show the superiority of MEOW against other state-of-the-art methods.
translated by 谷歌翻译
Previous work has shown the potential of deep learning to predict renal obstruction using kidney ultrasound images. However, these image-based classifiers have been trained with the goal of single-visit inference in mind. We compare methods from video action recognition (i.e. convolutional pooling, LSTM, TSM) to adapt single-visit convolutional models to handle multiple visit inference. We demonstrate that incorporating images from a patient's past hospital visits provides only a small benefit for the prediction of obstructive hydronephrosis. Therefore, inclusion of prior ultrasounds is beneficial, but prediction based on the latest ultrasound is sufficient for patient risk stratification.
translated by 谷歌翻译
Video capture is the most extensively utilized human perception source due to its intuitively understandable nature. A desired video capture often requires multiple environmental conditions such as ample ambient-light, unobstructed space, and proper camera angle. In contrast, wireless measurements are more ubiquitous and have fewer environmental constraints. In this paper, we propose CSI2Video, a novel cross-modal method that leverages only WiFi signals from commercial devices and a source of human identity information to recover fine-grained surveillance video in a real-time manner. Specifically, two tailored deep neural networks are designed to conduct cross-modal mapping and video generation tasks respectively. We make use of an auto-encoder-based structure to extract pose features from WiFi frames. Afterward, both extracted pose features and identity information are merged to generate synthetic surveillance video. Our solution generates realistic surveillance videos without any expensive wireless equipment and has ubiquitous, cheap, and real-time characteristics.
translated by 谷歌翻译
Graph Neural Networks (GNNs), originally proposed for node classification, have also motivated many recent works on edge prediction (a.k.a., link prediction). However, existing methods lack elaborate design regarding the distinctions between two tasks that have been frequently overlooked: (i) edges only constitute the topology in the node classification task but can be used as both the topology and the supervisions (i.e., labels) in the edge prediction task; (ii) the node classification makes prediction over each individual node, while the edge prediction is determinated by each pair of nodes. To this end, we propose a novel edge prediction paradigm named Edge-aware Message PassIng neuRal nEtworks (EMPIRE). Concretely, we first introduce an edge splitting technique to specify use of each edge where each edge is solely used as either the topology or the supervision (named as topology edge or supervision edge). We then develop a new message passing mechanism that generates the messages to source nodes (through topology edges) being aware of target nodes (through supervision edges). In order to emphasize the differences between pairs connected by supervision edges and pairs unconnected, we further weight the messages to highlight the relative ones that can reflect the differences. In addition, we design a novel negative node-pair sampling trick that efficiently samples 'hard' negative instances in the supervision instances, and can significantly improve the performance. Experimental results verify that the proposed method can significantly outperform existing state-of-the-art models regarding the edge prediction task on multiple homogeneous and heterogeneous graph datasets.
translated by 谷歌翻译